Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2009 Jun;1793(6):1096-104. doi: 10.1016/j.bbamcr.2009.02.004. Epub 2009 Feb 27.

Gene regulation by voltage-dependent calcium channels.

Author information

  • 1Grenoble Institute of Neuroscience, Inserm U 836-Team 3 Calcium Channels, Functions and Pathologies, Bâtiment Edmond Safra, Université Joseph Fourier, Site santé de la Tronche, BP 170, 38042 Grenoble cedex 9, France.

Abstract

Ca2+ is the most widely used second messenger in cell biology and fulfills a plethora of essential cell functions. One of the most exciting findings of the last decades was the involvement of Ca2+ in the regulation of long-term cell adaptation through its ability to control gene expression. This finding provided a link between cell excitation and gene expression. In this review, we chose to focus on the role of voltage-dependent calcium channels in mediating gene expression in response to membrane depolarization. We illustrate the different pathways by which these channels are involved in excitation-transcription coupling, including the most recent Ca2+ ion-independent strategies that highlight the transcription factor role of calcium channels.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk