Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Bioinformation. 2008;3(2):72-82. Epub 2008 Oct 24.

Ranking of binding and nonbinding peptides to MHC class I molecules using inverse folding approach: implications for vaccine design.

Author information

  • 1Amity Institute of Biotechnology, Amity University Uttar Pradesh, Gomati Nagar, Lucknow-226010, India.

Abstract

T cell recognition of the peptide-MHC complex initiates a cascade of immunological events necessary for immune responses. Accurate T-cell epitope prediction is an important part of the vaccine designing. Development of predictive algorithms based on sequence profile requires a very large number of experimental binding peptide data to major histocompatibility complex (MHC) molecules. Here we used inverse folding approach to study the peptide specificity of MHC Class-I molecule with the aim of obtaining a better differentiation between binding and nonbinding sequence. Overlapping peptides, spanning the entire protein sequence, are threaded through the backbone coordinates of a known peptide fold in the MHC groove, and their interaction energies are evaluated using statistical pairwise contact potentials. We used the Miyazawa & Jernigan and Betancourt & Thirumalai tables for pairwise contact potentials, and two distance criteria (Nearest atom >> 4.0 A & C-beta >> 7.0 A) for ranking the peptides in an ascending order according to their energy values, and in most cases, known antigenic peptides are highly ranked. The predictions from threading improved when used multiple templates and average scoring scheme. In general, when structural information about a protein-peptide complex is available, the current application of the threading approach can be used to screen a large library of peptides for selection of the best binders to the target protein. The proposed scheme may significantly reduce the number of peptides to be tested in wet laboratory for epitope based vaccine design.

KEYWORDS:

MHC; contact potential; epitope; template; threading

PMID:
19238199
[PubMed]
PMCID:
PMC2639678
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk