Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Psychophysiol. 2009 Jul;73(1):53-61. doi: 10.1016/j.ijpsycho.2008.12.018. Epub 2009 Feb 15.

Mining EEG-fMRI using independent component analysis.

Author information

  • 1Department of Biological and Medical Psychology, University of Bergen, 5009 Bergen, Norway. tom.eichele@psybp.uib.no

Abstract

Independent component analysis (ICA) is a multivariate approach that has become increasingly popular for analyzing brain imaging data. In contrast to the widely used general linear model (GLM) that requires the user to parameterize the brain's response to stimuli, ICA allows the researcher to explore the factors that constitute the data and alleviates the need for explicit spatial and temporal priors about the responses. In this paper, we introduce ICA for hemodynamic (fMRI) and electrophysiological (EEG) data processing, and one of the possible extensions to the population level that is available for both data types. We then selectively review some work employing ICA for the decomposition of EEG and fMRI data to facilitate the integration of the two modalities to provide an overview of what is available and for which purposes ICA has been used. An optimized method for symmetric EEG-fMRI decomposition is proposed and the outstanding challenges in multimodal integration are discussed.

PMID:
19223007
[PubMed - indexed for MEDLINE]
PMCID:
PMC2693483
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk