Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biophys J. 2009 Feb 18;96(4):1640-8. doi: 10.1016/j.bpj.2008.11.011.

Cardiac myocyte excitation by ultrashort high-field pulses.

Author information

  • 1Division of Cardiac Electrophysiology, Department of Cardiology, The Methodist Hospital, Houston, Texas, USA.

Abstract

In unexcitable, noncardiac cells, ultrashort (nanosecond) high-voltage (megavolt-per-meter) pulsed electrical fields (nsPEF) can mobilize intracellular Ca2+ and create transient nanopores in the plasmalemma. We studied Ca2+ responses to nsPEF in cardiac cells. Fluorescent Ca2+ or voltage signals were recorded from isolated adult rat ventricular myocytes deposited in an electrode microchamber and stimulated with conventional pulses (CPs; 0.5-2.4 kV/cm, 1 ms) or nsPEF (10-80 kV/cm, 4 ns). nsPEF induced Ca2+ transients in 68/104 cells. Repeating nsPEF increased the likelihood of Ca2+ transient induction (61.8% for <10 nsPEF vs. 80.6% for > or =10 nsPEF). Repetitive Ca2+ waves arising at the anodal side and Ca2+ destabilization occurred after repeated nsPEF (12/29) or during steady-state single nsPEF delivery at 2 Hz. Removing extracellular Ca2+ abolished responses to nsPEF. Verapamil did not affect nsPEF-induced Ca2+ transients, but decreased responses to CP. Tetrodotoxin and KB-R7943 increased the repetition threshold in response to nsPEF: 1-20 nsPEF caused local anodal Ca2+ waves without Ca2+ transients, and > or =20 nsPEF caused normal transients. Ryanodine-thapsigargin and caffeine protected against nsPEF-induced Ca2+ waves and showed less recovery of diastolic Ca2+ levels than CP. Voltage recordings demonstrated action potentials triggered by nsPEF, even in the presence of tetrodotoxin. nsPEF can mobilize intracellular Ca2+ in cardiac myocytes by inducing action potentials. Anodal Ca2+ waves and resistance to Na+ and Ca2+ channel blockade suggest nonselective ion channel transport via sarcolemmal nanopores as a triggering mechanism.

PMID:
19217879
[PubMed - indexed for MEDLINE]
PMCID:
PMC2717245
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk