Send to

Choose Destination
See comment in PubMed Commons below
FASEB J. 2009 Jun;23(6):1685-93. doi: 10.1096/fj.08-126458. Epub 2009 Feb 11.

Autocrine regulation of T-cell activation by ATP release and P2X7 receptors.

Author information

  • 1Department of Surgery, University of California San Diego, San Diego, California, USA.


T-cell activation requires the influx of extracellular calcium, although mechanistic details regarding such activation are not fully defined. Here, we show that P2X(7) receptors play a key role in calcium influx and downstream signaling events associated with the activation of T cells. By real-time PCR and immunohistochemistry, we find that Jurkat T cells and human CD4(+) T cells express abundant P2X(7) receptors. We show, using a novel fluorescent microscopy technique, that T-cell receptor (TCR) stimulation triggers the rapid release of ATP (<100 microM). This release of ATP is required for TCR-mediated calcium influx, NFAT activation, and interleukin-2 (IL-2) production. TCR activation up-regulates P2X(7) receptor gene expression. Removal of extracellular ATP by apyrase or alkaline phosphatase treatment, inhibition of ATP release with the maxi-anion channel blocker gadolinium chloride, or siRNA silencing of P2X(7) receptors blocks calcium entry and inhibits T-cell activation. Moreover, lymphocyte activation is impaired in C57BL/6 mice that express poorly functional P2X(7) receptors, compared to control BALB/c mice, which express fully functional P2X(7) receptors. We conclude that ATP release and autocrine, positive feedback through P2X(7) receptors is required for the effective activation of T cells.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk