Electrostatic and functional analysis of the seven-bladed WD beta-propellers

Evol Bioinform Online. 2008 Jun 13:4:203-16. doi: 10.4137/ebo.s743.

Abstract

beta-propeller domains composed of WD repeats are highly ubiquitous and typically used as multi-site docking platforms to coordinate and integrate the activities of groups of proteins. Here, we have used extensive homology modelling of the WD40-repeat family of seven-bladed beta-propellers coupled with subsequent structural classification and clustering of these models to define subfamilies of beta-propellers with common structural, and probable, functional characteristics. We show that it is possible to assign seven-bladed WD beta-propeller proteins into functionally different groups based on the information gained from homology modelling. We examine general structural diversity within the WD40-repeat family of seven-bladed beta-propellers and demonstrate that seven-bladed beta-propellers composed of WD-repeats are structurally distinct from other seven-bladed beta-propellers. We further provide some insights into the multifunctional diversity of the seven-bladed WD beta-propeller surfaces. This report once again reinforces the importance of structural data and the usefulness of homology models in functional classification.

Keywords: WD protein; electrostatics; evolutionary trace; protein clustering; β-propeller.