Display Settings:

Format

Send to:

Choose Destination
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3243-8. doi: 10.1073/pnas.0806852106. Epub 2009 Feb 9.

Absolute humidity modulates influenza survival, transmission, and seasonality.

Author information

  • 1College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA. jshaman@coas.oregonstate.edu

Abstract

Influenza A incidence peaks during winter in temperate regions. The basis for this pronounced seasonality is not understood, nor is it well documented how influenza A transmission principally occurs. Previous studies indicate that relative humidity (RH) affects both influenza virus transmission (IVT) and influenza virus survival (IVS). Here, we reanalyze these data to explore the effects of absolute humidity on IVT and IVS. We find that absolute humidity (AH) constrains both transmission efficiency and IVS much more significantly than RH. In the studies presented, 50% of IVT variability and 90% of IVS variability are explained by AH, whereas, respectively, only 12% and 36% are explained by RH. In temperate regions, both outdoor and indoor AH possess a strong seasonal cycle that minimizes in winter. This seasonal cycle is consistent with a wintertime increase in IVS and IVT and may explain the seasonality of influenza. Thus, differences in AH provide a single, coherent, more physically sound explanation for the observed variability of IVS, IVT and influenza seasonality in temperate regions. This hypothesis can be further tested through future, additional laboratory, epidemiological and modeling studies.

Comment in

PMID:
19204283
[PubMed - indexed for MEDLINE]
PMCID:
PMC2651255
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk