Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1991 Oct 5;266(28):18884-8.

Structural homology among mammalian and Saccharomyces cerevisiae isoprenyl-protein transferases.

Author information

  • 1Department of Cancer Research, Merck Sharp and Dohme Research Laboratories, West Point, Pennsylvania 19486.

Abstract

Farnesyl-protein transferase (FTase) purified from rat or bovine brain is an alpha/beta heterodimer, comprised of subunits having relative molecular masses of approximately 47 (alpha) and 45 kDa (beta). In the yeast Saccharomyces cerevisiae, two unlinked genes, RAM1/DPR1 (RAM1) and RAM2, are required for FTase activity. To explore the relationship between the mammalian and yeast enzymes, we initiated cloning and immunological analyses. cDNA clones encoding the 329-amino acid COOH-terminal domain of bovine FTase alpha-subunit were isolated. Comparison of the amino acid sequences deduced from the alpha-subunit cDNA and the RAM2 gene revealed 30% identity and 58% similarity, suggesting that the RAM2 gene product encodes a subunit for the yeast FTase analogous to the bovine FTase alpha-subunit. Antisera raised against the RAM1 gene product reacted specifically with the beta-subunit of bovine FTase, suggesting that the RAM1 gene product is analogous to the bovine FTase beta-subunit. Whereas a ram1 mutation specifically inhibits FTase, mutations in the CDC43 and BET2 genes, both of which are homologous to RAM1, specifically inhibit geranylgeranyl-protein transferase (GGTase) type I and GGTase-II, respectively. In contrast, a ram2 mutation impairs both FTase and GGTase-I, but has little effect on GGTase-II. Antisera that specifically recognized the bovine FTase alpha-subunit precipitated both bovine FTase and GGTase-I activity, but not GGTase-II activity. Together, these results indicate that for both yeast and mammalian cells, FTase, GGTase-I, and GGTase-II are comprised of different but homologous beta-subunits and that the alpha-subunits of FTase and GGTase-I share common features not shared by GGTase-II.

PMID:
1918005
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk