Format

Send to

Choose Destination
See comment in PubMed Commons below
Conf Proc IEEE Eng Med Biol Soc. 2008;2008:4609-12. doi: 10.1109/IEMBS.2008.4650240.

Analysis of postprandial lipemia as a Cardiovascular Disease risk factor using genetic and clinical information: an Artificial Neural Network perspective.

Author information

  • 1School of Electrical and Computer Engineering, National Technical University of Athens, 9 Heroon Polytechneiou Str. 15780 Zographou, Greece. ivalavan@biosim.ntua.gr

Abstract

Clinical studies indicate that exaggerated postprandial lipemia is linked to the progression of atherosclerosis, leading cause of Cardiovascular Diseases (CVD). CVD is a multi-factorial disease with complex etiology and according to the literature postprandial Triglycerides (TG) can be used as an independent CVD risk factor. Aim of the current study is to construct an Artificial Neural Network (ANN) based system for the identification of the most important gene-gene and/or gene-environmental interactions that contribute to a fast or slow postprandial metabolism of TG in blood and consequently to investigate the causality of postprandial TG response. The design and development of the system is based on a dataset of 213 subjects who underwent a two meals fatty prandial protocol. For each of the subjects a total of 30 input variables corresponding to genetic variations, sex, age and fasting levels of clinical measurements were known. Those variables provide input to the system, which is based on the combined use of Parameter Decreasing Method (PDM) and an ANN. The system was able to identify the ten (10) most informative variables and achieve a mean accuracy equal to 85.21%.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Write to the Help Desk