Send to

Choose Destination
See comment in PubMed Commons below
Magn Reson Med. 2009 Feb;61(2):462-6. doi: 10.1002/mrm.21843.

B1 and T1 insensitive water and lipid suppression using optimized multiple frequency-selective preparation pulses for whole-brain 1H spectroscopic imaging at 3T.

Author information

  • 1Department of Electrical Engineering, Stanford University, Stanford, California 94305-5488, USA.


A new method for the simultaneous suppression of water and lipid resonances using a series of dual-band frequency-selective radiofrequency (RF) pulses with associated dephasing gradients is presented. By optimizing the nutation angles of the individual pulses, the water and lipid suppression is made insensitive to a range of both T1-relaxation times and B1 inhomogeneities. The method consists only of preparatory RF pulses and thus can be combined with a wide variety of MRSI schemes including both long and short TE studies. Simulations yield suppression factors, in the presence of +/-20% B1 inhomogeneity, on the order of 100 for lipid peaks with three different T1s (300 ms, 310 ms, and 360 ms), and water peaks with T1s ranging from 0.8 s to 4 s. Excellent in vivo study performance is demonstrated using a 3 Tesla volumetric proton spectroscopic imaging (1H-MRSI) sequence for measuring the primary brain metabolites peaks of choline (Cho), creatine (Cr), and N-acetyl aspartate (NAA).

Copyright 2009 Wiley-Liss, Inc.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Write to the Help Desk