Send to:

Choose Destination
See comment in PubMed Commons below
Mol Genet Metab. 2009 Apr;96(4):268-72. doi: 10.1016/j.ymgme.2008.12.005. Epub 2009 Jan 20.

Exogenous mannose does not raise steady state mannose-6-phosphate pools of normal or N-glycosylation-deficient human fibroblasts.

Author information

  • 1Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.


Increasing intracellular mannose-6-phosphate (Man-6-P) was previously reported to reduce the amount of the major lipid linked oligosaccharide (LLO) precursor of N-glycans; a loss that might decrease cellular N-glycosylation. If so, providing dietary mannose supplements to glycosylation-deficient patients might further impair their glycosylation. To address this question, we studied the effects of exogenous mannose on intracellular levels of Man-6-P, LLO, and N-glycosylation in human and mouse fibroblasts. Mannose (500microM) did not increase Man-6-P pools in human fibroblasts from controls or from patients with Congenital Disorders of Glycosylation (CDG), who have 90-95% deficiencies in either phosphomannomutase (CDG-Ia) or phosphomannose isomerase (MPI) (CDG-Ib), enzymes that both use Man-6-P as a substrate. In the extreme case of fibroblasts derived from Mpi null mice (<0.001% MPI activity), intracellular Man-6-P levels greatly increased in response to exogenous mannose, and this produced a dose-dependent decrease in the steady state level of the major LLO precursor. However, LLO loss did not decrease total protein N-glycosylation or that of a hypoglycosylation indicator protein, DNaseI. These results make it very unlikely that exogenous mannose could impair N-glycosylation in glycosylation-deficient CDG patients.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk