Format

Send to:

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2009 Mar;75(6):1621-7. doi: 10.1128/AEM.02154-08. Epub 2009 Jan 16.

Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions.

Author information

  • 1Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Winterthurerstr. 272, CH-8057 Zurich, Switzerland.

Abstract

The gram-positive bacterium Listeria monocytogenes is a food-borne pathogen of both public health and food safety significance. It possesses three small, highly homologous protein members of the cold shock protein (Csp) family. We used gene expression analysis and a set of mutants with single, double, and triple deletions of the csp genes to evaluate the roles of CspA, CspB, and CspD in the cold and osmotic (NaCl) stress adaptation responses of L. monocytogenes. All three Csps are dispensable for growth at optimal temperature (37 degrees C). These proteins are, however, required for efficient cold and osmotic stress tolerance of this bacterium. The hierarchies of their functional importance differ, depending on the environmental stress conditions: CspA>CspD>CspB in response to cold stress versus CspD>CspA/CspB in response to NaCl salt osmotic stress. The fact that Csps are promoting L. monocytogenes adaptation against both cold and NaCl stress has significant implications in view of practical food microbial control measures. The combined or sequential exposure of L. monocytogenes cells to these two stresses in food environments might inadvertently induce cross-protection responses.

PMID:
19151183
[PubMed - indexed for MEDLINE]
PMCID:
PMC2655451
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk