Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Brain Res Rev. 2009 Apr;60(1):65-83. doi: 10.1016/j.brainresrev.2008.12.005. Epub 2008 Dec 25.

Voltage-gated sodium channels in pain states: role in pathophysiology and targets for treatment.

Author information

  • 1Department of Neurology and Center for Neuroscience and Regeneration Research Yale University School of Medicine, New Haven, CT 06510, USA. sulayman.dib-hajj@yale.edu

Abstract

Pain is a major unmet medical need which has been causally linked to changes in sodium channel expression, modulation, or mutations that alter channel gating properties or current density in nociceptor neurons. Voltage-gated sodium channels activate (open) then rapidly inactivate in response to a depolarization of the plasma membrane of excitable cells allowing the transient flow of sodium ions thus generating an inward current which underlies the generation and conduction of action potentials (AP) in these cells. Activation and inactivation, as well as other gating properties, of sodium channel isoforms have different kinetics and voltage-dependent properties, so that the ensemble of channels that are present determine the electrogenic properties of specific neurons. Biophysical and pharmacological studies have identified the peripheral-specific sodium channels Na(v)1.7, Na(v)1.8 and Na(v)1.9 as particularly important in the pathophysiology of different pain syndromes, and isoform-specific blockers of these channels or targeting their modulators hold the promise of a future effective therapy for treatment of pain.

PMID:
19150627
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk