Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2009;4(1):e4173. doi: 10.1371/journal.pone.0004173. Epub 2009 Jan 12.

Interleukin-32 promotes osteoclast differentiation but not osteoclast activation.

Author information

  • 1Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford, UK. guillaume.mabilleau@ndos.ox.ac.uk

Abstract

BACKGROUND:

Interleukin-32 (IL-32) is a newly described cytokine produced after stimulation by IL-2 or IL-18 and IFN-gamma. IL-32 has the typical properties of a pro-inflammatory mediator and although its role in rheumatoid arthritis has been recently reported its effect on the osteoclastogenesis process remains unclear.

METHODOLOGY/PRINCIPAL FINDINGS:

In the present study, we have shown that IL-32 was a potent modulator of osteoclastogenesis in vitro, whereby it promoted the differentiation of osteoclast precursors into TRAcP+ VNR+ multinucleated cells expressing specific osteoclast markers (up-regulation of NFATc1, OSCAR, Cathepsin K), but it was incapable of inducing the maturation of these multinucleated cells into bone-resorbing cells. The lack of bone resorption in IL-32-treated cultures could in part be explain by the lack of F-actin ring formation by the multinucleated cells generated. Moreover, when IL-32 was added to PBMC cultures maintained with soluble RANKL, although the number of newly generated osteoclast was increased, a significant decrease of the percentage of lacunar resorption was evident suggesting a possible inhibitory effect of this cytokine on osteoclast activation. To determine the mechanism by which IL-32 induces such response, we sought to determine the intracellular pathways activated and the release of soluble mediators in response to IL-32. Our results indicated that compared to RANKL, IL-32 induced a massive activation of ERK1/2 and Akt. Moreover, IL-32 was also capable of stimulating the release of IL-4 and IFN-gamma, two known inhibitors of osteoclast formation and activation.

CONCLUSIONS/SIGNIFICANCE:

This is the first in vitro report on the complex role of IL-32 on osteoclast precursors. Further clarification on the exact role of IL-32 in vivo is required prior to the development of any potential therapeutic approach.

PMID:
19137064
[PubMed - indexed for MEDLINE]
PMCID:
PMC2613539
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk