Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Neurosci. 2009 Feb;12(2):163-71. doi: 10.1038/nn.2252. Epub 2009 Jan 11.

Synaptotagmin IV: a multifunctional regulator of peptidergic nerve terminals.

Author information

  • 1Department of Physiology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, Madison, Wisconsin 53706, USA.

Abstract

Many members of the synaptotagmin (Syt) protein family bind Ca(2+) and trigger exocytosis, but some Syt proteins appear to have no Ca(2+)-dependent actions and their biological functions remain obscure. Syt IV is an activity-induced brain protein with no known Ca(2+)-dependent interactions and its subcellular localization and biological functions have sparked considerable controversy. We found Syt IV on both micro- and dense-core vesicles in posterior pituitary nerve terminals in mice. In terminals from Syt IV knockout mice compared with those from wild types, low Ca(2+) entry triggered more exocytosis, high Ca(2+) entry triggered less exocytosis and endocytosis was accelerated. In Syt IV knockouts, dense-core and microvesicle fusion was enhanced in cell-attached patches and dense-core vesicle fusion pores had conductances that were half as large as those in wild types. Given the neuroendocrine functions of the posterior pituitary, changes in Syt IV levels could be involved in endocrine transitions involving alterations in the release of the neuropeptides oxytocin and vasopressin.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk