Display Settings:

Format

Send to:

Choose Destination
Neuroendocrinology. 2009;89(4):424-40. doi: 10.1159/000191646. Epub 2009 Jan 9.

Sex differences in the cannabinoid modulation of appetite, body temperature and neurotransmission at POMC synapses.

Author information

  • 1Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.

Abstract

We sought to determine whether sex differences exist for the cannabinoid modulation of appetite, body temperature and neurotransmission at pro-opiomelanocortin (POMC) synapses. Gonadectomized male and female guinea pigs were outfitted to monitor core body temperature and injected with either the CB1 receptor agonist WIN 55,212-2 (1 mg/kg s.c.), antagonist AM251 (3 mg/kg s.c.) or vehicle (1 ml/kg s.c.) and evaluated for changes in six indices of feeding behavior under ad libitum conditions for 7 days. WIN 55,212-2 elicited an overt, sexually differentiated hyperphagia in which males displayed larger increases in hourly and daily intake, consumption/gram body weight, meal size and meal duration. The agonist also produced a more robust acute hypothermia in males than in females. In addition, males were more sensitive to the hypophagic effect of AM251, manifested by comparatively sizeable decreases in hourly intake, consumption/gram body weight, meal frequency and hyperthermia. To gain additional insight into the cellular mechanism underlying cannabinoid regulation of energy homeostasis, we performed whole-cell patch clamp recordings in hypothalamic slices prepared from gonadectomized male and female guinea pigs, and monitored miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) in arcuate (ARC) neurons. ARC neurons from females exhibited a higher basal mEPSC frequency. WIN 55,212-2 dose-dependently reduced mEPSC and mIPSC frequency; however, cells from males were far less sensitive to the CB1 receptor-mediated decrease in mIPSC frequency. These effects were observed in neurons subsequently identified as POMC neurons. These data reveal pronounced sex differences in how cannabinoids influence the hypothalamic control of homeostasis.

Copyright 2009 S. Karger AG, Basel.

PMID:
19136814
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for S. Karger AG, Basel, Switzerland
    Loading ...
    Write to the Help Desk