Display Settings:

Format

Send to:

Choose Destination
Plant Cell. 2009 Jan;21(1):25-38. doi: 10.1105/tpc.108.063206. Epub 2009 Jan 9.

The functional role of pack-MULEs in rice inferred from purifying selection and expression profile.

Author information

  • 1Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA.

Abstract

Gene duplication is an important mechanism for evolution of new genes. In plants, a special group of transposable elements, called Pack-MULEs or transduplicates, is able to duplicate and amplify genes or gene fragments on a large scale. Despite the abundance of Pack-MULEs, the functionality of these duplicates is not clear. Here, we present a comprehensive analysis of expression and purifying selection on 2809 Pack-MULEs in rice (Oryza sativa), which are derived from 1501 parental genes. At least 22% of the Pack-MULEs are transcribed, and 28 Pack-MULEs have direct evidence of translation. Chimeric Pack-MULEs, which contain gene fragments from multiple genes, are much more frequently expressed than those derived only from a single gene. In addition, Pack-MULEs are frequently associated with small RNAs. The presence of these small RNAs is associated with a reduction in expression of both the Pack-MULEs and their parental genes. Furthermore, an assessment of the selection pressure on the Pack-MULEs using the ratio of nonsynonymous (Ka) and synonymous (Ks) substitution rates indicates that a considerable number of Pack-MULEs likely have been under selective constraint. The Ka/Ks values of Pack-MULE and parental gene pairs are lower among Pack-MULEs that are expressed in sense orientations. Taken together, our analysis suggests that a significant number of Pack-MULEs are expressed and subjected to purifying selection, and some are associated with small RNAs. Therefore, at least a subset of Pack-MULEs are likely functional and have great potential in regulating gene expression as well as providing novel coding capacities.

PMID:
19136648
[PubMed - indexed for MEDLINE]
PMCID:
PMC2648092
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk