Format

Send to:

Choose Destination
See comment in PubMed Commons below
Free Radic Biol Med. 2009 Mar 1;46(5):663-71. doi: 10.1016/j.freeradbiomed.2008.12.008. Epub 2008 Dec 24.

Attenuation of lipopolysaccharide-induced oxidative stress and apoptosis in fetal pulmonary artery endothelial cells by hypoxia.

Author information

  • 1Department of Pediatrics, Medical College of Wisconsin, Milwaukee, USA. vsampath@mcw.edu

Abstract

Pulmonary vascular endothelial injury resulting from lipopolysaccharide (LPS) and oxygen toxicity contributes to vascular simplification seen in the lungs of premature infants with bronchopulmonary dysplasia. Whether the severity of endotoxin-induced endothelial injury is modulated by ambient oxygen tension (hypoxic intrauterine environment vs. hyperoxic postnatal environment) remains unknown. We posited that ovine fetal pulmonary artery endothelial cells (FPAEC) will be more resistant to LPS toxicity under hypoxic conditions (20-25 Torr) mimicking the fetal milieu. LPS (10 microg/ml) inhibited FPAEC proliferation and induced apoptosis under normoxic conditions (21% O(2)) in vitro. LPS-induced FPAEC apoptosis was attenuated in hypoxia (5% O(2)) and exacerbated by hyperoxia (55% O(2)). LPS increased intracellular superoxide formation, as measured by 2-hydroxyethidium (2-HE) formation, in FPAEC in normoxia and hypoxia. 2-HE formation in LPS-treated FPAEC increased in parallel with the severity of LPS-induced apoptosis in FPAEC, increasing from hypoxia to normoxia to hyperoxia. Differences in LPS-induced apoptosis between hypoxia and normoxia were abolished when LPS-treated FPAEC incubated in hypoxia were pretreated with menadione to increase superoxide production. Apocynin decreased 2-HE formation, and attenuated LPS-induced FPAEC apoptosis under normoxic conditions. We conclude that ambient oxygen concentration modulates the severity of LPS-mediated injury in FPAEC by regulating superoxide levels produced in response to LPS.

PMID:
19135525
[PubMed - indexed for MEDLINE]
PMCID:
PMC2646363
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk