Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2009 Jan 5;17(1):185-92.

Plasmon-enhanced emission from optically-doped MOS light sources.

Author information

  • 1Geballe Laboratory for Advanced Materials, Stanford University Stanford, CA 94305, USA.


We evaluate the spontaneous emission rate (Purcell) enhancement for optically-doped metal-dielectric-semiconductor light-emitting structures by considering the behavior of a semiclassical oscillating point dipole placed within the dielectric layer. For a Ag-SiO(2)-Si structure containing emitters at the center of a 20-nm-thick SiO(2) layer, spontaneous emission rate enhancements of 40 to 60 can be reached in the wavelength range of 600 to 1800 nm, far away from the surface plasmon resonance; similar enhancements are also possible if Al is used instead of Ag. For dipoles contained in the thin oxide layer of a Ag-SiO(2)-Si-SiO(2) structure, the emission exhibits strong preferential coupling to a single well-defined Si waveguide mode. This work suggests a means of designing a new class of power-efficient, high-modulation-speed, CMOS-compatible optical sources that take full advantage of the excellent electrical properties and plasmon-enhanced op cal properties afforded by MOS devices.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk