Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
ISME J. 2009 May;3(5):512-21. doi: 10.1038/ismej.2008.131. Epub 2009 Jan 8.

Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata.

Author information

  • 1School of Natural Sciences, University of California, Merced, CA 95344, USA.

Abstract

Increasing evidence confirms the crucial role bacteria and archaea play within the coral holobiont, that is, the coral host and its associated microbial community. The bacterial component constitutes a community of high diversity, which appears to change in structure in response to disease events. In this study, we highlight the limitation of 16S rRNA gene (16S rDNA) clone library sequencing as the sole method to comprehensively describe coral-associated communities. This limitation was addressed by combining a high-density 16S rRNA gene microarray with, clone library sequencing as a novel approach to study bacterial communities in healthy versus diseased corals. We determined an increase in diversity as well as a significant shift in community structure in Montastraea faveolata colonies displaying phenotypic signs of White Plague Disease type II (WPD-II). An accumulation of species that belong to families that include known coral pathogens (Alteromonadaceae, Vibrionaceae), bacteria previously isolated from diseased, stressed or injured marine invertebrates (for example, Rhodobacteraceae), and other species (for example, Campylobacteraceae) was observed. Some of these species were also present in healthy tissue samples, but the putative primary pathogen, Aurantimonas corallicida, was not detected in any sample by either method. Although an ecological succession of bacteria during disease progression after causation by a primary agent represents a possible explanation for our observations, we also discuss the possibility that a disease of yet to be determined etiology may have affected M. faveolata colonies and resulted in (or be a result of) an increase in opportunistic pathogens.

PMID:
19129866
[PubMed - indexed for MEDLINE]

Publication Types, MeSH Terms, Substances, Secondary Source ID

Publication Types

MeSH Terms

Substances

Secondary Source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk