Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Inorg Chem. 2009 Feb 2;48(3):1069-81. doi: 10.1021/ic801731s.

Oligomerization and autocatalysis of NH2BH2 with ammonia-borane.

Author information

  • 1Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, USA. zimmerman@stanford.edu

Abstract

The reactivity of NH(2)BH(2) in the presence of ammonia-borane (AB) is investigated using ab initio CCSD(T) simulations to answer the following three questions: How do AB and NH(2)BH(2) react? How do aminoborane species oligomerize apart from catalytic centers? Can the formation of experimentally observed products, especially cyclic N(2)B(2)H(7)-NH(2)BH(3), be explained through the kinetics of NH(2)BH(2) oligomerization in the presence of AB? AB is shown to react with NH(2)BH(2) by the addition of NH(3)-BH(3) across the N=B double bond, generating linear NH(3)BH(2)NH(2)BH(3). This species decomposes by surmounting a reasonable barrier to produce two NH(2)BH(2) and H(2). The generation of additional NH(2)BH(2) from NH(2)BH(2) and AB provides a pathway for autocatalytic NH(2)BH(2) production. The important intermediates along the oligomerization pathway include cyclic (NH(2)BH(2))(2) and linear NH(3)BH(2)NH(2)BH(3), both of which have been observed experimentally. Calculations show cyclic N(2)B(2)H(7)-NH(2)BH(3), an aminoborane analogue of ethylcyclobutane, to be the kinetically preferred stable intermediate resulting from oligomerization of free NH(2)BH(2) over its isomers, cyclic B(2)N(2)H(7)-BH(2)NH(3) and cyclotriborazane, cyclic (NH(2)BH(2))(3). Simulations show cyclotriborazane formation to be kinetically slower than cyclic B(2)N(2)H(7)-NH(2)BH(3) formation and imply that formation of the cyclic species cyclotriborazane and cyclopentaborazane may be catalyzed by binding of NH(2)BH(2) to a catalytic metal center. Routes that may lead to larger noncyclic oligomers are suggested to be kinetically competitive. The highly reactive N=B double bonds of NH(2)BH(2) are shown to be of central importance in understanding aminoborane oligomerization.

PMID:
19125668
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk