Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biochim Biophys Acta. 1991 Sep 20;1079(3):293-302.

Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, from Methanosarcina barkeri.

Author information

  • 1Department of Microbiology, Faculty of Science, University of Nijmegen, The Netherlands.

Abstract

5,10-Methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase have been purified to homogeneity by a factor of 86 and 68, respectively, from methanol-grown Methanosarcina barkeri cells. The dehydrogenase was isolated as a hexamer of a single 35 kDa subunit, whereas the reductase was composed of four identical 38 kDa subunits. The purified oxygen-stable enzymes catalyzed the oxidation of 5,10-methylenetetrahydromethanopterin and methyltetrahydromethanopterin with Vmax values of 3000 and 200 mumol min-1 mg-1, respectively. The methanogenic electron carrier coenzyme F420 was a specific electron acceptor for both enzymes. Steady state kinetics for the two enzymes were in agreement with ternary complex (sequential) mechanisms. Methylene reductase and methylene dehydrogenase are proposed to function in the methanol oxidation step to CO2.

PMID:
1911853
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk