Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Endocrinol Metab. 2009 Jul;297(1):E10-8. doi: 10.1152/ajpendo.90949.2008. Epub 2008 Dec 30.

Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism.

Author information

  • 1Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA, USA. YSHI@hmc.psu.edu

Abstract

Monoacyglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze two consecutive steps of enzyme reactions in the synthesis of triacylglycerols (TAGs). The metabolic complexity of TAG synthesis is reflected by the presence of multiple isoforms of MGAT and DGAT enzymes that differ in catalytic properties, subcellular localization, tissue distribution, and physiological functions. MGAT and DGAT enzymes play fundamental roles in the metabolism of monoacylglycerol (MAG), diacylglycerol (DAG), and triacylglycerol (TAG) that are involved in many aspects of physiological functions, such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, signal transduction, satiety, and lactation. The recent progress in the phenotypic characterization of mice deficient in MGAT and DGAT enzymes and the development of chemical inhibitors have revealed important roles of these enzymes in the regulation of energy homeostasis and insulin sensitivity. Consequently, selective inhibition of MGAT or DGAT enzymes by synthetic compounds may provide novel treatment for obesity and its related metabolic complications.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk