Format

Send to

Choose Destination
See comment in PubMed Commons below
Aquat Toxicol. 2009 Feb 19;91(3):203-11. doi: 10.1016/j.aquatox.2008.11.003. Epub 2008 Nov 12.

Toxicity of the pharmaceutical clotrimazole to marine microalgal communities.

Author information

  • 1Department of Plant and Environmental Sciences, University of Gothenburg, Box 461, SE-40530 Göteborg, Sweden. tobias.porsbring@dpes.gu.se

Abstract

Clotrimazole belongs to the group of 14alpha-demethylase inhibiting fungicides. It is widely used in human and veterinary medicine and has been identified as a priority pollutant for the marine environment. However, the toxicity of clotrimazole to marine primary producers is largely unknown. We therefore sampled natural microalgal communities (periphyton) and exposed them to concentration series of clotrimazole over 4 days. 50 pmol/L clotrimazole caused a concentration-dependent accumulation of C14alpha-methylated sterol precursors, which coincided with a decrease in algal-specific C14-desmethyl sterols. This indicates an inhibition of algal 14 alpha-demethylases already at environmental concentrations. A clotrimazole concentration of 500 pmol/L reduced total sterol content to 64% of control level. Community chlorophyll a content was affected by clotrimazole in a bi-phasic manner with first reductions becoming visible at 500 pmol/L, along with indications of an altered cycling of photoprotective xanthophyll pigments. Concentrations of 10-100 nmol/L and higher caused large reductions in community growth, and changed community pigment profiles in a concentration-dependent monotonous manner. The study further indicated that diatoms use obtusifoliol as a natural substrate for 14alpha-demethylase, just as higher plants do but also utilize norlanosterol.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk