Format

Send to:

Choose Destination
See comment in PubMed Commons below
Protist. 2009 Feb;160(1):111-21. doi: 10.1016/j.protis.2008.10.003. Epub 2008 Dec 10.

Metapopulation Structure in the Planktonic Diatom Ditylum brightwellii (Bacillariophyceae).

Author information

  • 1Graduate School of Oceanography, University of Rhode Island, South Ferry Rd., Narragansett, RI 02882, USA. rynearson@gso.uri.edu

Abstract

Approximately 200,000 diatom species are thought to exist and yet the underlying processes of speciation in diatoms are unknown. Because genetic subdivision within species can reveal potential speciation mechanisms, we examined genetic differentiation and patterns of gene flow among four populations of the diatom Ditylum brightwellii. Single-cell isolates were examined at two microsatellite markers and two rDNA loci (18S and internal transcribed spacer region I (ITSI)). Among isolates, rDNA sequences varied by 0.08+/-0.04% (18S) and 0.7+/-0.3% (ITSI) and there were no compensatory base pair changes in the predicted ITSI secondary structure, all suggesting that a single species was represented. Two numerically dominant ITSI sequence types were detected and their distribution among isolates from genetically distinct populations was significantly different. Two populations shared ITSI sequence type 1 and two shared ITSI sequence type 2, indicating differences in relatedness among populations. The signature of unequal gene flow among populations suggested that D. brightwellii exhibited a metapopulation structure: the species was subdivided into populations of populations. The identification of metapopulations suggests a possible mechanism of speciation through reduced levels of gene flow, providing newly evolved taxa with a large repository of genetic and physiological diversity and perhaps significant adaptive potential.

PMID:
19083268
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk