Send to:

Choose Destination
See comment in PubMed Commons below
FEMS Yeast Res. 2009 Mar;9(2):257-69. doi: 10.1111/j.1567-1364.2008.00467.x. Epub 2008 Dec 6.

Centaurin-like protein Cnt5 contributes to arsenic and cadmium resistance in fission yeast.

Author information

  • 1Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.


Arsenic (As) and cadmium (Cd) are two of the most hazardous substances in the environment and have been implicated in a number of human diseases including cancer. Their mechanisms of toxicity and subsequent carcinogenesis are not understood. To identify the genes involved in As/Cd detoxification, we screened a random insertional mutagenesis library of Schizosaccharomyces pombe for mutants that are hypersensitive to As/Cd. Mutations were mapped to spc1(+) (sty1(+)) and SPBC17G9.08c. Spc1 is a stress-activated protein kinase orthologous to human p38. A fragment of SPBC17G9.08c was previously identified as csx2, a high-copy suppressor of cut6 that encodes an acetyl-CoA carboxylase involved in fatty acid biosynthesis. SPBC17G9.08c is a member of the centaurin ADP ribosylation factor GTPase activating protein family found in a variety of fungi, plants and metazoans, but not in Saccharomyces cerevisiae. Cnt5, so named because its closest human homolog is centaurin beta-5, binds to phosphatidic acid and phosphatidyl serine in vitro. Microscopic localization of Cnt5-GFP indicates significant redistribution of Cnt5 from the cytoplasm to the cell membranes in response to As stress. These data suggest a model in which Cnt5 contributes to As/Cd resistance by maintaining membrane integrity or by modulating membrane trafficking.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk