Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20464-9. doi: 10.1073/pnas.0810962106. Epub 2008 Dec 11.

Long-chain carboxychromanols, metabolites of vitamin E, are potent inhibitors of cyclooxygenases.

Author information

  • 1Department of Foods and Nutrition, Interdepartmental Nutrition Program, Purdue University, West Lafayette, IN 47907, USA. qjiang@purdue.edu

Abstract

Cyclooxygenase (COX-1/COX-2)-catalyzed eicosanoid formation plays a key role in inflammation-associated diseases. Natural forms of vitamin E are recently shown to be metabolized to long-chain carboxychromanols and their sulfated counterparts. Here we find that vitamin E forms differentially inhibit COX-2-catalyzed prostaglandin E(2) in IL-1beta-stimulated A549 cells without affecting COX-2 expression, showing the relative potency of gamma-tocotrienol approximately delta-tocopherol > gamma-tocopherol >> alpha- or beta-tocopherol. The cellular inhibition is partially diminished by sesamin, which blocks the metabolism of vitamin E, suggesting that their metabolites may be inhibitory. Consistently, conditioned media enriched with long-chain carboxychromanols, but not their sulfated counterparts or vitamin E, reduce COX-2 activity in COX-preinduced cells with 5 microM arachidonic acid as substrate. Under this condition, 9'- or 13'-carboxychromanol, the vitamin E metabolites that contain a chromanol linked with a 9- or 13-carbon-length carboxylated side chain, inhibits COX-2 with an IC(50) of 6 or 4 microM, respectively. But 13'-carboxychromanol inhibits purified COX-1 and COX-2 much more potently than shorter side-chain analogs or vitamin E forms by competitively inhibiting their cyclooxygenase activity with K(i) of 3.9 and 10.7 microM, respectively, without affecting the peroxidase activity. Computer simulation consistently indicates that 13'-carboxychromanol binds more strongly than 9'-carboxychromanol to the substrate-binding site of COX-1. Therefore, long-chain carboxychromanols, including 13'-carboxychromanol, are novel cyclooxygenase inhibitors, may serve as anti-inflammation and anticancer agents, and may contribute to the beneficial effects of certain forms of vitamin E.

PMID:
19074288
[PubMed - indexed for MEDLINE]
PMCID:
PMC2629323
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk