Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biotechnol J. 2008 Dec;3(12):1521-38. doi: 10.1002/biot.200800193.

Neural stem cells: mechanisms of fate specification and nuclear reprogramming in regenerative medicine.

Author information

  • 1Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy.

Abstract

Recently, intense interest in the potential use of neural stem cells (NSC) in the clinical therapy of brain disease and injury has resulted in rapid progress in research on the properties of NSC, their innate and directed differentiation potential and the induced reprogramming of differentiated somatic cells to revert to a pluripotent NSC-like state. The aim of this review is to give an overview of our current operational definitions of the NSC lineage, the growing understanding of extrinsic and intrinsic mechanisms, including heritable but reversible epigenetic chromatin modifications that regulate the maintenance and differentiation of NSC in vivo, and to emphasize ground-breaking efforts of cellular reprogramming with the view to generating patient-specific stem cells for cell replacement therapy. This is set against a summary of current practical procedures for the isolation, research and application of NSC, and of the state of the art in NSC-based regenerative medicine of the nervous system. Both provide the backdrop for the translation of recent findings into innovative clinical applications, with the hope of increasing the safety, efficiency and ethical acceptability of NSC-based therapies in the near future.

PMID:
19072908
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk