Display Settings:

Format

Send to:

Choose Destination
Environ Sci Technol. 2008 Nov 15;42(22):8290-6.

Isotopic evidence suggests different initial reaction mechanisms for anaerobic benzene biodegradation.

Author information

  • 1Stable Isotope Laboratory, Department of Geology, University of Toronto, 22 Russell Street, Toronto, Ontario, Canada M5S 3B1.

Abstract

The initial metabolic reactions for anaerobic benzene biodegradation remain uncharacterized. Isotopic data for carbon and hydrogen fractionation from nitrate-reducing, sulfate-reducing, and methanogenic benzene-degrading enrichment cultures and phylogenic information were used to investigate the initial reaction step in anaerobic benzene biodegradation. Dual parameter plots of carbon and hydrogen isotopic data (deltadelta2H/ deltadelta13C) from each culture were linear, suggesting a consistent reaction mechanism as degradation proceeded. Methanogenic and sulfate-reducing cultures showed consistently higher slopes (m = 29 +/- 2) compared to nitrate-reducing cultures (m = 13 +/- 2) providing evidence for different initial reaction mechanisms. Phylogenetic analyses confirmed that culture conditions were strictly anaerobic, precluding any involvement of molecular oxygen in the observed differences. Using published kinetic data, we explored the possibility of attributing such slopes to reaction mechanisms. The higher slopes found under methanogenic and sulfate-reducing conditions suggest against an alkylation mechanism for these cultures. Observed differences between the methanogenic and nitrate-reducing cultures may not represent distinct reactions of different bonds, but rather subtle differences in relative reaction kinetics. Additional mechanistic conclusions could not be made because kinetic isotope effect data for carboxylation and other putative mechanisms are not available.

PMID:
19068808
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk