Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Struct Biol. 2008 Dec 8;8:53. doi: 10.1186/1472-6807-8-53.

Residue contact-count potentials are as effective as residue-residue contact-type potentials for ranking protein decoys.

Author information

  • 1The Max Planck Institute for Molecular Genetics, Berlin, Germany. dan.bolser@gmail.com

Abstract

BACKGROUND:

For over 30 years potentials of mean force have been used to evaluate the relative energy of protein structures. The most commonly used potentials define the energy of residue-residue interactions and are derived from the empirical analysis of the known protein structures. However, single-body residue 'environment' potentials, although widely used in protein structure analysis, have not been rigorously compared to these classical two-body residue-residue interaction potentials. Here we do not try to combine the two different types of residue interaction potential, but rather to assess their independent contribution to scoring protein structures.

RESULTS:

A data set of nearly three thousand monomers was used to compare pairwise residue-residue 'contact-type' propensities to single-body residue 'contact-count' propensities. Using a large and standard set of protein decoys we performed an in-depth comparison of these two types of residue interaction propensities. The scores derived from the contact-type and contact-count propensities were assessed using two different performance metrics and were compared using 90 different definitions of residue-residue contact. Our findings show that both types of score perform equally well on the task of discriminating between near-native protein decoys. However, in a statistical sense, the contact-count based scores were found to carry more information than the contact-type based scores.

CONCLUSION:

Our analysis has shown that the performance of either type of score is very similar on a range of different decoys. This similarity suggests a common underlying biophysical principle for both types of residue interaction propensity. However, several features of the contact-count based propensity suggests that it should be used in preference to the contact-type based propensity. Specifically, it has been shown that contact-counts can be predicted from sequence information alone. In addition, the use of a single-body term allows for efficient alignment strategies using dynamic programming, which is useful for fold recognition, for example. These facts, combined with the relative simplicity of the contact-count propensity, suggests that contact-counts should be studied in more detail in the future.

PMID:
19063740
[PubMed - indexed for MEDLINE]
PMCID:
PMC2642821
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk