Format

Send to:

Choose Destination
See comment in PubMed Commons below
Tissue Eng Part A. 2009 Jul;15(7):1611-8. doi: 10.1089/ten.tea.2008.0187.

Reconstruction of engineered uterine tissues containing smooth muscle layer in collagen/matrigel scaffold in vitro.

Author information

  • 1Department of Tissue Engineering, Beijing Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, PR China.

Abstract

OBJECTIVE:

This study attempted to reconstruct engineered uterine tissues (EUTs) containing smooth muscle layer, akin to the normal uterine wall.

METHODS:

EUTs were reconstructed by seeding epithelial cells on top of the constructed stromal layer over smooth muscle layer. A self-made mold was used to keep the EUTs from contraction. At the same time, it provided static stretch to the EUTs. After 14 days of culture, the structure of the EUTs was analyzed histologically and immunohistochemically, or by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The expression of integrin beta3 subunit, heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), and HOXA-10 was detected by reverse transcription-polymerase chain reaction (RT-PCR). The ability of the EUTs supporting the development of embryos was estimated by coculturing embryos on the EUTs. We also tried a new method to reconstruct EUTs by mixing epithelial cell and stromal cells (1:2) in collagen/Matrigel to form an endometrial layer and putting it on top of the smooth muscle layer. The self-assembling ability of the endometrial epithelial cells and stromal cells in the reconstructed EUTs was analyzed histologically and immunohistochemically.

RESULTS:

The results found that the constructed EUTs with the first and the second method showed three-layered structures. The epithelial layer, stromal layer, and smooth muscle layer were stained by cytokeratin 18, vimentin, and alpha-actin, respectively. TEM showed that the cells in the EUTs reconstructed by the first method were attached to each other by apical tight junctions and rivet-like desmosomes. SEM showed protruded pinopodes, microvilli, and cilium of epithelial cells. The RT-PCR analysis showed that integrin beta3 subunit, HB-EGF, and HOXA-10 were expressed in EUTs. The coculture system of EUTs improved the development rate and quality of murine embryo significantly in comparison with those of control Chatot Ziomek Bavister culture. In the EUTs reconstructed by the second method, the epithelial cells demonstrated self-assembling ability and formed epithelial cell layer on top of the stromal layer and glandular tube-like structures in the stromal layer. Columnar epithelial cells existed in some parts of the epithelial layer.

CONCLUSION:

We engineered EUTs containing smooth muscle layer by two methods. The reconstructed EUTs could support the development of embryos. The epithelial cells showed self-assembling ability in the EUTs.

PMID:
19061433
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Atypon
    Loading ...
    Write to the Help Desk