Effects of nitrobenzene concentration and hydraulic retention time on the treatment of nitrobenzene in sequential anaerobic baffled reactor (ABR)/continuously stirred tank reactor (CSTR) system

Bioresour Technol. 2009 Apr;100(7):2162-70. doi: 10.1016/j.biortech.2008.10.049. Epub 2008 Dec 6.

Abstract

The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention times (HRT) on the treatment of NB were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system. In the first step of the study, the maximum COD removal efficiencies were found as 88% and 92% at NB concentrations varying between 30 mg L(-1) and 210 mg L(-1) in ABR. The minimum COD removal efficiency was 79% at a NB concentration of 700 mg L(-1). The removal efficiency of NB was nearly 100% for all NB concentrations in the ABR reactor. The methane gas production and the methane gas percentage remained stable (1500 mL day(-1) and 48-50%, respectively) as the NB concentration was increased from 30 to 210 mg L(-1). In the second step of the study it was found that as the HRT decreased from 10.38 days to 2.5 days the COD removal efficiencies decreased slightly from 94% to 92% in the ABR. For maximum COD and NB removal efficiencies the optimum HRT was found as 2.5 days in the ABR. The total COD removal efficiency was 95% in sequential anaerobic (ABR)/aerobic (CSTR) reactor system at a minimum HRT of 1 day. When the HRT was decreased from 10.38 days to 1 day, the methane percentage decreased from 42% to 29% in an ABR reactor treating 100 mg L(-1) NB. Nitrobenzene was reduced to aniline under anaerobic conditions while aniline was mineralized to catechol with meta cleavage under aerobic conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anaerobiosis / drug effects
  • Aniline Compounds / isolation & purification
  • Biodegradation, Environmental / drug effects
  • Bioreactors*
  • Gases
  • Methane / metabolism
  • Nitrobenzenes / isolation & purification*
  • Nitrobenzenes / pharmacology*
  • Oxidation-Reduction / drug effects
  • Oxygen / isolation & purification
  • Time Factors

Substances

  • Aniline Compounds
  • Gases
  • Nitrobenzenes
  • nitrobenzene
  • Methane
  • Oxygen
  • aniline