Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biol Lett. 2009 Apr 23;5(2):160-2. doi: 10.1098/rsbl.2008.0641. Epub 2008 Dec 4.

Latent inhibition of predator recognition by embryonic amphibians.

Author information

  • 1Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2. maud.ferrari@usask.ca


To avoid being captured, prey animals need to be able to distinguish predators from non-predators. Recent studies have shown that amphibians can learn to recognize their future predators while in the egg. Here, we investigated whether amphibians would similarly be able to learn to recognize non-predators while in the egg. We exposed newly laid wood frog eggs to the odour of tiger salamander or a water control daily for 5 days. After hatching, the wood frog larvae were raised for two weeks at which time we tried to condition them to recognize the salamander as a predator. Larvae were exposed to injured conspecific cues paired with salamander odour, a well-established mode of learning for aquatic prey. When subsequently tested for their response to salamander odour, the larvae pre-exposed to water as embryos showed significant anti-predator responses. However, larvae pre-exposed to the salamander odour as embryos showed no learning of the predator, indicating that they had already learned to recognize the salamander as a non-predator. These results indicate that amphibian embryos can (i) learn to recognize stimuli as non-threatening and (ii) remember it for at least two weeks. The widespread ability of prey to learn to recognize non-predators might explain the persistence of injured conspecific cues as a reliable mechanism for learned predator recognition.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk