Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Virology. 2009 Feb 5;384(1):223-32. doi: 10.1016/j.virol.2008.10.040. Epub 2008 Dec 2.

Genomic analysis of the smallest giant virus--Feldmannia sp. virus 158.

Author information

  • 1Marine Biological Association, Citadel Hill, Plymouth, UK.

Abstract

Genomic analysis of Feldmannia sp. virus 158, the second phaeovirus to be sequenced in its entirety, provides further evidence that large double-stranded DNA viruses share similar evolutionary pressures as cellular organisms. Reductive evolution is clearly evident within the phaeoviruses which occurred via several routes: the loss of genes from an ancestral virus core genome most likely through genetic drift; and as a result of relatively large recombination events that caused wholesale loss of genes. The entire genome is 154,641 bp in length and has 150 predicted coding sequences of which 87% have amino acid sequence similarities to other algal virus coding sequences within the family Phycodnaviridae. Significant similarities were found, for thirty eight coding sequences (25%), to genes in gene databanks that are known to be involved in processes that include DNA replication, DNA methylation, signal transduction, viral integration and transposition, and protein-protein interactions. Unsurprisingly, the greatest similarity was observed between the two known viruses that infect Feldmannia, indicating the taxonomic linkage of these two viruses with their hosts. Moreover, comparative analysis of phycodnaviral genomic sequences revealed the smallest set of core genes (10 out of a possible 31) required to make a functional nucleocytoplasmic large dsDNA virus.

PMID:
19054537
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk