Send to

Choose Destination
See comment in PubMed Commons below
Epilepsia. 2009 Apr;50(4):711-20. doi: 10.1111/j.1528-1167.2008.01888.x. Epub 2008 Nov 19.

Anticonvulsant effects of the BK-channel antagonist paxilline.

Author information

  • 1Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.



Mutations that enhance currents through the Ca(2+)- and voltage-gated K(+) channel BK (Slo, maxiK, KCNMA1) have been associated with seizure disorders in both rodent models and humans. Previously we have found that seizures themselves induce a gain-of-function in BK channels that is associated with elevated excitability in neocortical neurons. In this study, we sought to examine whether administration of BK-channel antagonists possess anticonvulsant activity in vivo.


Seizures were induced in animals by intraperitoneal (i.p.) injection of the gamma-aminobutyric acid (GABA)(A) antagonists picrotoxin or pentylenetetrazole. Twenty-four hours following induction of the initial seizure episode, animals were reinjected with chemoconvulsant in the presence of the BK-channel antagonist paxilline or saline. The presence and duration of tonic-clonic seizures were evaluated.


Intraperitoneal injection of paxilline was sufficient to eliminate tonic-clonic seizures in picrotoxin-treated animals. Paxilline reduced seizure duration and intensity in pentylenetetrazole-injected animals.


The BK-channel antagonist paxilline possesses significant anticonvulsant activity in both picrotoxin and pentylenetetrazole seizure models, an effect that may be related to the seizure-dependent gain-of-function in BK channel previously observed in neocortical neurons in vitro.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk