Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biol Chem. 2009 Mar 27;284(13):8412-20. doi: 10.1074/jbc.M804524200. Epub 2008 Dec 1.

Biomechanical Regulation of Endothelium-dependent Events Critical for Adaptive Remodeling.

Author information

  • 1Center for Excellence in Vascular Biology, Departments of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.

Abstract

Alterations in hemodynamic shear stress acting on the vascular endothelium are critical for adaptive arterial remodeling. The molecular mechanisms regulating this process, however, remain largely uncharacterized. Here, we sought to define the responses evoked in endothelial cells exposed to shear stress waveforms characteristic of coronary collateral vessels and the subsequent paracrine effects on smooth muscle cells. A lumped parameter model of the human coronary collateral circulation was used to simulate normal and adaptive remodeling coronary collateral shear stress waveforms. These waveforms were then applied to cultured human endothelial cells (EC), and the resulting differences in EC gene expression were assessed by genome-wide transcriptional profiling to identify genes distinctly regulated by collateral flow. Analysis of these transcriptional programs identified several genes to be differentially regulated by collateral flow, including genes important for endothelium-smooth muscle interactions. In particular, the transcription factor KLF2 was up-regulated by the adaptive remodeling coronary collateral waveform, and several of its downstream targets displayed the expected modulation, including the down-regulation of connective tissue growth factor. To assess the effect of endothelial KLF2 expression on smooth muscle cell migration, a three-dimensional microfluidic assay was developed. Using this three-dimensional system, we showed that KLF2-expressing EC co-cultured with SMC significantly reduce SMC migration compared with control EC and that this reduction can be rescued by the addition of exogenous connective tissue growth factor. Collectively, these results demonstrate that collateral flow evokes distinct EC gene expression profiles and functional phenotypes that subsequently influence vascular events important for adaptive remodeling.

PMID:
19047056
[PubMed - indexed for MEDLINE]
PMCID:
PMC2659199
Free PMC Article

Images from this publication.See all images (4)Free text

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk