Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Metab. 2008 Nov;8(5):347-58. doi: 10.1016/j.cmet.2008.08.017.

Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation.

Author information

  • 1Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, 67404, Illkirch, France.

Erratum in

  • Cell Metab. 2009 Feb;9(2):210.

Abstract

The NAD(+)-dependent deacetylase SIRT1 controls metabolic processes in response to low nutrient availability. We report the metabolic phenotype of mice treated with SRT1720, a specific and potent synthetic activator of SIRT1 that is devoid of direct action on AMPK. SRT1720 administration robustly enhances endurance running performance and strongly protects from diet-induced obesity and insulin resistance by enhancing oxidative metabolism in skeletal muscle, liver, and brown adipose tissue. These metabolic effects of SRT1720 are mediated by the induction of a genetic network controlling fatty acid oxidation through a multifaceted mechanism that involves the direct deacetylation of PGC-1alpha, FOXO1, and p53 and the indirect stimulation of AMPK signaling through a global metabolic adaptation mimicking low energy levels. Combined with our previous work on resveratrol, the current study further validates SIRT1 as a target for the treatment of metabolic disorders and characterizes the mechanisms underlying the therapeutic potential of SIRT1 activation.

PMID:
19046567
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk