Format

Send to:

Choose Destination
See comment in PubMed Commons below
Microb Ecol. 2009 Feb;57(2):276-85. doi: 10.1007/s00248-008-9473-9. Epub 2008 Nov 26.

Identification and genetic characterization of phenol-degrading bacteria from leaf microbial communities.

Author information

  • 1Department of Plant Pathology and Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA.

Abstract

Microbial communities on aerial plant leaves may contribute to the degradation of organic air pollutants such as phenol. Epiphytic bacteria capable of phenol degradation were isolated from the leaves of green ash trees grown at a site rich in airborne pollutants. Bacteria from these communities were subjected, in parallel, to serial enrichments with increasing concentrations of phenol and to direct plating followed by a colony autoradiography screen in the presence of radiolabeled phenol. Ten isolates capable of phenol mineralization were identified. Based on 16S rDNA sequence analysis, these isolates included members of the genera Acinetobacter, Alcaligenes, and Rhodococcus. The sequences of the genes encoding the large subunit of a multicomponent phenol hydroxylase (mPH) in these isolates indicated that the mPHs of the gram-negative isolates belonged to a single kinetic class, and that is one with a moderate affinity for phenol; this affinity was consistent with the predicted phenol levels in the phyllosphere. PCR amplification of genes for catechol 1,2-dioxygenase (C12O) and catechol 2,3-dioxygenase (C23O) in combination with a functional assay for C23O activity provided evidence that the gram-negative strains had the C12O-, but not the C23O-, phenol catabolic pathway. Similarly, the Rhodococcus isolates lacked C23O activity, although consensus primers to the C12O and C23O genes of Rhodococcus could not be identified. Collectively, these results demonstrate that these leaf surface communities contained several taxonomically distinct phenol-degrading bacteria that exhibited diversity in their mPH genes but little diversity in the catabolic pathways they employ for phenol degradation.

PMID:
19034559
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk