Send to:

Choose Destination
See comment in PubMed Commons below
Micron. 2009 Apr;40(3):350-8. doi: 10.1016/j.micron.2008.10.005. Epub 2008 Oct 19.

Manganese/polymetallic nodules: micro-structural characterization of exolithobiontic- and endolithobiontic microbial biofilms by scanning electron microscopy.

Author information

  • 1National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, CHN-100037 Beijing, China.


Polymetallic/ferromanganese nodules (Mn-nodules) provide a rich source for manganese. It is not yet known if the nodules have a biogenic or an abiogenic origin. Here we applied the technique of high-resolution scanning electron microscopy, in combination with energy dispersive X-ray spectroscopical (EDX) analysis, to trace the existence of microbial biofilms. Two spatially separated assemblies exist, the exolithobiontic- and endolithobiontic colonizations. The exolithobiontic colonization is seen in the micro-canals, which traverse the outer surface layer of the nodules and are formed by elongated filamentous organisms, which show no signs of mineralization. In the center of the nodules three types of endolithobiontic microbial biofilms exist: first, cone-like microorganisms forming biofilms, second stone/pillar-like microorganisms and finally paving stone-like, hexagonal microorganisms. All are covered by brick-like mineral deposits. By EDX analysis we could measured the highest relative level of carbon (C) with respect to manganese (Mn) and sodium on the microorganisms. Our data are in perfect agreement with the assumption that the Mn deposits in the nodules are of biogenic origin. In a first approach, DNA from microorganisms from the interior of those Mn-nodules was isolated by PCR, and sequenced with respect to the 16S ribosomal RNA gene. Sequence comparison revealed that the sequence from the Mn-nodule, studied here, shares highest similarity to a bacterium living in soil, rich in iron and manganese. We propose that the microorganisms form a biofilm within the nodules onto which Mn is deposited due to an oxidation from Mn(II) to Mn(III)/Mn(IV).

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk