Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Gene Med. 2009 Jan;11(1):38-45. doi: 10.1002/jgm.1273.

In vivo targeted gene delivery by cationic nanoparticles for treatment of hepatocellular carcinoma.

Author information

  • 1Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain.

Abstract

BACKGROUND:

Transgene expression in vivo for therapeutic purposes will require methods that allow for efficient gene transfer into cells. Although current vector technologies are being improved, the development of novel vector systems with improved targeting specificity, higher transduction efficiencies and improved safety is necessary.

METHODS:

Asialoglycoprotein receptor-targeted cationic nanoparticles for interleukin (IL)-12 encapsulation (NP1) or adsorption (NP2) have been formulated by blending poly(D,L-lactic-co-glycolic) acid (PLGA) (50 : 50) with the cationic lipid 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and the ligand asialofetuin (AF), by using a modified solvent evaporation process.

RESULTS:

We present a novel targeted lipopolymeric vector, which improves significantly the levels of luciferase gene expression in the liver upon i.v. administration. Targeted-NP2 particles showed a five- and 12-fold higher transfection activity in the liver compared to non-targeted (plain) complexes or naked pCMV DNA, respectively. On the other hand, BNL tumor-bearing animals treated with AF-NP1 containing the therapeutic gene IL-12, showed tumor growth inhibition, leading to a complete tumor regression in 75% of the treated mice, without signs of recurrence. High levels of IL-12 and interferon-gamma were detected in the sera of treated animals. Mice survival also improved considerably. Tumor treatment with AF-NP2 formulations lead only to a retardation in the tumor growth.

CONCLUSIONS:

In the present study, we have developed an efficient targeted non-viral vector for IL-12 gene transfer in hepatocellular carcinoma in vivo, by employing non-toxic cationic PLGA/DOTAP/AF nanoparticles. These results demonstrate for the first time that this cationic system could be used successfully and safely for delivery of therapeutic genes with antitumor activity into liver tumors with targeting specificity.

(c) 2008 John Wiley & Sons, Ltd.

PMID:
19021130
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk