Send to

Choose Destination
See comment in PubMed Commons below
Mol Ther. 2009 Jan;17(1):57-64. doi: 10.1038/mt.2008.236. Epub 2008 Nov 18.

Enhanced therapeutic efficacy by simultaneously targeting two genetic defects in tumors.

Author information

  • 1Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.


Targeting tumor-specific gene abnormalities has become an attractive approach in developing therapeutics to treat cancer. Overexpression of Bcl2 and mutations of p53 represent two of the most common molecular defects in tumors. In the nucleus, p53 induces cell cycle arrest, while it interacts with Bcl2 outside of the nucleus to regulate signal pathways involved in apoptosis. To potentiate antitumor activity, we tested a "double target" approach to antitumor therapy by combining H101, a recombinant oncolytic adenovirus that targets the inactive p53 in tumors, with a small interfering RNA (siBCL2) that targets Bcl2. In cell culture, the combined treatment significantly enhanced apoptosis and cytotoxicity as compared with treatment with either H101 or siBCL2 alone. In animals carrying tumor xenographs, combined H101 and siBCL2 treatment significantly inhibited tumor growth and prolonged survival. At the end of the study, all animals in the combined therapy group survived and two of the five animals showed complete eradication of their tumors. Interestingly, siBCL2 treatment increased H101 viral replication in both treated cells and tumor tissues. Simultaneously targeting two tumor-specific gene abnormalities using an oncolytic adenovirus and siRNA potentiates total antitumor activity.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk