Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 2008 Dec 1;181(11):7728-37.

Self-antigen prevents CD8 T cell effector differentiation by CD134 and CD137 dual costimulation.

Author information

  • 1Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030-1601, USA.

Abstract

We compared how CD4 vs CD8 cells attain the capacity to express the effector cytokine IFN-gamma under both immunogenic and tolerogenic conditions. Although the Ifng gene locus was epigenetically repressed in naive Ag-inexperienced CD4 cells, it had already undergone partial remodeling toward a transcriptionally competent configuration in naive CD8 cells. After TCR stimulation, CD8 cells fully remodeled the Ifng locus and gained the capacity to express high levels of IFN-gamma more rapidly than CD4 cells. Enforced dual costimulation through OX40 and 4-1BB redirected CD8 cells encountering soluble exogenous peptide to expand and differentiate into IFN-gamma and TNF-alpha double-producing effectors rather than becoming tolerant. Despite this and the stronger tendency of CD8 compared with CD4 cells to differentiate into IFN-gamma-expressing effectors, when parenchymal self-Ag was the source of tolerizing Ag, enforced dual costimulation selectively boosted expansion but did not push effector differentiation in CD8 cells while both expansion and effector differentiation were dramatically boosted in CD4 cells. Notably, enforced dual costimulation was able to push effector differentiation in CD8 cells encountering cognate parenchymal self-Ag when CD4 cells were simultaneously engaged. Thus, the ability of enforced OX40 plus 4-1BB dual costimulation to redirect CD8 cells to undergo effector differentiation was unexpectedly influenced by the source of tolerizing Ag and help was selectively required to facilitate CD8 cell effector differentiation when the tolerizing Ag derived from self.

PMID:
19017962
[PubMed - indexed for MEDLINE]
PMCID:
PMC2846364
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk