Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2009 Sep;1792(9):847-52. doi: 10.1016/j.bbadis.2008.10.008. Epub 2008 Oct 25.

Familial tumoral calcinosis and the role of O-glycosylation in the maintenance of phosphate homeostasis.

Author information

  • 1Center for Translational Genetics, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel.

Abstract

Familial tumoral calcinosis refers to a group of disorders inherited in an autosomal recessive fashion. Hyperphosphatemic tumoral calcinosis is characterized by increased re-absorption of phosphate through the renal proximal tubule, resulting in elevated phosphate concentration and deposition of calcified deposits in cutaneous and subcutaneous tissues, as well as, occasionally, in visceral organs. The disease was found to result from mutations in at least 3 genes: GALNT3, encoding a glycosyltransferase termed ppGalNacT3, FGF23 encoding a potent phosphaturic protein, and KL encoding Klotho. Recent data showed that ppGalNacT3 mediates O-glycosylation of FGF23, thereby allowing for its secretion and possibly protecting it from proteolysis-mediated inactivation. Klotho was found to serve as a co-receptor for FGF23, thereby integrating the genetic data into a single physiological system. The elucidation of the molecular basis of HFTC shed new light upon the mechanisms regulating phosphate homeostasis, suggesting innovative therapeutic strategies for the management of hyperphosphatemia in common acquired conditions such as chronic renal failure.

PMID:
19013236
[PubMed - indexed for MEDLINE]
PMCID:
PMC3169301
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk