Format

Send to:

Choose Destination
See comment in PubMed Commons below
FASEB J. 1991 Feb;5(2):156-63.

Life with CO or CO2 and H2 as a source of carbon and energy.

Author information

  • Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106.

Erratum in

  • FASEB J 1991 May;5(8):2216.

Abstract

An account is presented of the recent discovery of a pathway of growth by bacteria in which CO or CO2 and H2 are sources of carbon and energy. The Calvin cycle and subsequently other cycles were discovered in the 1950s, and in each the initial reaction of CO2 involved adding CO2 to an organic compound formed during the cyclic pathway (for example, CO2 and ribulose diphosphate). Studies were initiated in the 1950s with the thermophylic anaerobic organism Clostridium thermoaceticum, which Barker and Kamen had found fixed CO2 in both carbons of acetate during fermentation of glucose. The pathway of acetyl-CoA biosynthesis differs from all others in that two CO2 are combined with coenzyme A (CoASH) forming acetyl CoA, which then serves as the source of carbon for growth. This mechanism is designated the acetyl CoA pathway and some have called it the Wood pathway. A unique feature is the role of the enzyme carbon monoxide dehydrogenase (CODH), which catalyzes the conversion of CoASH, CO, and a methyl group to acetyl CoA, the final step of the pathway. The pathway involves the reduction of CO2 to formate, which then combines with tetrahydrofolate (THF) to form formyl THF. It in turn is reduced to CH3-THF. The methyl is then transferred to the cobalt on a corrinoid-containing enzyme. From there the methyl is transferred to CODH, and CO and CoASH bind with the enzyme at separate sites. Acetyl CoA is then synthesized. CODH would more properly be called carbon monoxide dehydrogenase-acetyl CoA synthase as it catalyzes oxidation of CO to CO2 and the synthesis of acetyl CoA. The solution of the mechanism of this pathway required more than 30 years, in part because the intermediate compounds are bound to enzymes, the enzymes are extremely sensitive to O2 and must be isolated under strictly anerobic conditions, and the role of a corrinoid and CODH was unprecedented. It is now apparent that this pathway occurs (perhaps with some modification) in many bacteria including the methane and sulfur bacteria. In some humans this pathway is catalyzed by the bacteria of the gut and acetate is produced rather than methane; it is calculated that 2.3 x 10(6) metric tons of acetate are formed daily from CO2. A similar synthesis occurs in the hind gut of termites. It is becoming apparent that the acetyl CoA pathway plays a significant role in the carbon cycle.(ABSTRACT TRUNCATED AT 400 WORDS)

PMID:
1900793
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk