Format

Send to:

Choose Destination
See comment in PubMed Commons below
Clin Chim Acta. 2009 Feb;400(1-2):48-55. doi: 10.1016/j.cca.2008.10.009. Epub 2008 Oct 26.

Physiogenomic comparison of edema and BMI in patients receiving rosiglitazone or pioglitazone.

Author information

  • 1Genomas, Inc., 67 Jefferson St, Hartford, CT, United States. g.ruano@genomas.net

Abstract

BACKGROUND:

The thiazolidinediones (TZDs) improve tissue sensitivity to insulin in patients with type II diabetes, resulting in reduced levels of fasting blood glucose and glycated hemoglobin. However, TZDs unpredictably demonstrate adverse effects of increased body weight, fluid retention, and edema. The balance of efficacy and safety of TZD varies widely from patient to patient. Genetic variability may reveal pathophysiological pathways underlying weight gain associated with TZD therapy and due to adiposity and/or edema.

METHODS:

We analyzed 384 single nucleotide polymorphisms (SNPs) from 222 cardiovascular and metabolic genes in 87 outpatients with type 2 diabetes receiving thiazolidinedione therapy. Physiogenomic analysis was used to discover associations with body mass index (BMI) and edema.

RESULTS:

The 5 most significant gene associations found between BMI and SNPs were ADORA1, adenosine A1 receptor (rs903361, p<0.0003), PKM2, pyruvate kinase-muscle (rs2856929, p<0.002); ADIPOR2, adiponectin receptor 2 (rs7975375, p<0.007); UCP2, uncoupling protein 2 (rs660339, p<0.008); and APOH, apolipoprotein H (rs8178847, p<0.010). For edema, the 5 most significant gene associations were NPY, neuropeptide Y (rs1468271, p<0.006); GYS1, glycogen synthase 1-muscle (rs2287754, p<0.013); CCL2, chemokine C-C motif ligand 2 (rs3760396, p<0.015); OLR1, oxidized LDL receptor 1 (rs2742115, p<0.015); and GHRH, growth hormone releasing hormone (rs6032470, p<0.023). After accounting for multiple comparisons, ADORA1 was significantly associated with BMI at a false discovery rate (FDR) of <10%.

CONCLUSION:

Physiogenomic associations were discovered suggesting mechanistic links between adenosine signaling and BMI, and between vascular permeability and drug-induced edema.

PMID:
18996102
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk