Format

Send to

Choose Destination
See comment in PubMed Commons below
Stroke. 2009 Jan;40(1):285-93. doi: 10.1161/STROKEAHA.108.526673. Epub 2008 Nov 6.

Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema.

Author information

  • 1Department of Neurology, Julius-Maximilians-University of Würzburg, Josef-Schneider Strasse 11, D-97080 Würzburg, Germany.

Abstract

BACKGROUND AND PURPOSE:

Brain edema is detrimental in ischemic stroke and its treatment options are limited. Kinins are proinflammatory peptides that are released during tissue injury. The effects of kinins are mediated by 2 different receptors (B1 and B2 receptor [B1R and B2R]) and comprise induction of edema formation and release of proinflammatory mediators.

METHODS:

Focal cerebral ischemia was induced in B1R knockout, B2R knockout, and wild-type mice by transient middle cerebral artery occlusion. Infarct volumes were measured by planimetry. Evan's blue tracer was applied to determine the extent of brain edema. Postischemic inflammation was assessed by real-time reverse-transcriptase polymerase chain reaction and immunohistochemistry. To analyze the effect of a pharmacological kinin receptor blockade, B1R and B2R inhibitors were injected.

RESULTS:

B1R knockout mice developed significantly smaller brain infarctions and less neurological deficits compared to wild-type controls (16.8+/-4.7 mm(3) vs 50.1+/-9.1 mm(3), respectively; P<0.0001). This was accompanied by a dramatic reduction of brain edema and endothelin-1 expression, as well as less postischemic inflammation. Pharmacological blockade of B1R likewise salvaged ischemic tissue (15.0+/-9.5 mm(3) vs 50.1+/-9.1 mm(3), respectively; P<0.01) in a dose-dependent manner, even when B1R inhibitor was applied 1 hour after transient middle cerebral artery occlusion. In contrast, B2R deficiency did not confer neuroprotection and had no effect on the development of tissue edema.

CONCLUSIONS:

These data demonstrate that blocking of B1R can diminish brain infarction and edema formation in mice and may open new avenues for acute stroke treatment in humans.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk