Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2009 Jan;37(1):14-25. doi: 10.1093/nar/gkn866. Epub 2008 Nov 6.

High-throughput chromatin information enables accurate tissue-specific prediction of transcription factor binding sites.

Author information

  • 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.

Abstract

In silico prediction of transcription factor binding sites (TFBSs) is central to the task of gene regulatory network elucidation. Genomic DNA sequence information provides a basis for these predictions, due to the sequence specificity of TF-binding events. However, DNA sequence alone is an impoverished source of information for the task of TFBS prediction in eukaryotes, as additional factors, such as chromatin structure regulate binding events. We show that incorporating high-throughput chromatin modification estimates can greatly improve the accuracy of in silico prediction of in vivo binding for a wide range of TFs in human and mouse. This improvement is superior to the improvement gained by equivalent use of either transcription start site proximity or phylogenetic conservation information. Importantly, predictions made with the use of chromatin structure information are tissue specific. This result supports the biological hypothesis that chromatin modulates TF binding to produce tissue-specific binding profiles in higher eukaryotes, and suggests that the use of chromatin modification information can lead to accurate tissue-specific transcriptional regulatory network elucidation.

PMID:
18988630
[PubMed - indexed for MEDLINE]
PMCID:
PMC2662491
Free PMC Article

Images from this publication.See all images (9)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk