Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Opin Microbiol. 2008 Dec;11(6):567-73. doi: 10.1016/j.mib.2008.10.002. Epub 2008 Nov 12.

Toward scalable parts families for predictable design of biological circuits.

Author information

  • 1Department of Bioengineering, University of California, Berkeley CA, United States.

Abstract

Our current ability to engineer biological circuits is hindered by design cycles that are costly in terms of time and money, with constructs failing to operate as desired, or evolving away from the desired function once deployed. Synthetic biologists seek to understand biological design principles and use them to create technologies that increase the efficiency of the genetic engineering design cycle. Central to the approach is the creation of biological parts--encapsulated functions that can be composited together to create new pathways with predictable behaviors. We define five desirable characteristics of biological parts--independence, reliability, tunability, orthogonality and composability, and review studies of small natural and synthetic biological circuits that provide insights into each of these characteristics. We propose that the creation of appropriate sets of families of parts with these properties is a prerequisite for efficient, predictable engineering of new function in cells and will enable a large increase in the sophistication of genetic engineering applications.

PMID:
18983935
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk