Format

Send to:

Choose Destination
See comment in PubMed Commons below
Psychoneuroendocrinology. 2009 Apr;34(3):367-81. doi: 10.1016/j.psyneuen.2008.09.015. Epub 2008 Nov 1.

Chronic fluoxetine treatment increases expression of synaptic proteins in the hippocampus of the ovariectomized rat: role of BDNF signalling.

Author information

  • 1Neuroscience Centre, University of Helsinki, Finland. Olivia.oleary@helsinki.fi

Abstract

Antidepressant drugs have been suggested to regulate synaptic transmission and structure. We hypothesised that antidepressant-induced changes in synapses and their associated proteins might become more apparent if they were measured under conditions of reduced synapse density. Therefore, in the present study, we examined whether chronic treatment with the antidepressant, fluoxetine alters expression of synaptic proteins in the hippocampus of rodents that underwent ovariectomy, a procedure which reportedly decreases synapse density in the CA1 region of the rat hippocampus. Using Western blotting, we measured changes in hippocampal expression of proteins associated with synapse structure, strength and activity namely, postsynaptic density protein 95 (PSD-95), the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) subunit GluR1 and phosphosynapsin (Ser9), respectively. We found that fluoxetine treatment increased expression of phosphosynapsin, PSD-95 and synaptic GluR1 (but not total GluR1) in the hippocampus of ovariectomized but not sham rats. Since BDNF and signalling at its receptor, TrkB, can mediate behavioural responses to antidepressants and induce neuronal plasticity, we investigated the contribution of TrkB signalling to fluoxetine-induced changes in synaptic protein expression by using a transgenic mouse model overexpressing a truncated form of the TrkB receptor (TrkB.T1). Fluoxetine produced a small but significant increase in hippocampal PSD-95 in ovariectomized wildtype mice but not in ovariectomized TrkB.T1 mice or sham mice. In contrast to rats, fluoxetine did not alter expression of synaptic GluR1 and did not reverse ovariectomy-induced decreases in hippocampal phosphosynapsin in either genotype. Taken together, these results suggest that chronic fluoxetine treatment can increase synaptic protein expression in the hippocampus and at least some of these effects require TrkB signalling. Moreover, these effects were only observed in ovariectomized animals, thus suggesting that fluoxetine-induced increases in synaptic protein levels might only occur or become detectable when hippocampal synaptic connectivity is perturbed.

PMID:
18977602
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk