In vitro characterization of a collagen scaffold enzymatically cross-linked with a tailored elastin-like polymer

Tissue Eng Part A. 2009 Apr;15(4):887-99. doi: 10.1089/ten.tea.2008.0104.

Abstract

Collagen, the main structural component of the extracellular matrix (ECM), provides tensile stiffness to different structures and organs against rupture. However, collagen tissue-engineered implants are hereto still lacking in mechanical strength. Attempts to create stiffer scaffolds have resulted in increased brittleness of the material, reducing the versatility of the original component. The hypothesis behind this research is that the introduction of an elastic element in the scaffold will enhance the mechanical properties of the collagen-based scaffolds, as elastin does in the ECM to prevent irreversible deformation. In this study, an elastin-like polymer (ELP) designed and synthesized using recombinant DNA methodology is used with the view to providing increased proteolytic resistance and increased functionality to the scaffolds by carrying specific sequences for microbial transglutaminase cross-linking, endothelial cell adhesion, and drug delivery. Evaluation of the effects that cross-linking ELP-collagen has on the physicochemical properties of the scaffold such as porosity, presence of cross-linking, thermal behavior, and mechanical strength demonstrated that the introduction of enzymatically resistant covalent bonds between collagen and ELP increases the mechanical strength of the scaffolds in a dose-dependent manner without significantly affecting the porosity or thermal properties of the original scaffold. Importantly, the scaffolds also showed selective behavior, in a dose (ELP)-dependent manner toward human umbilical vein endothelial cells and smooth muscle cells when compared to fibroblasts.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3 Cells
  • Amino Acid Sequence
  • Animals
  • Biocompatible Materials / chemistry
  • Biocompatible Materials / metabolism
  • Biomechanical Phenomena
  • Cell Survival / drug effects
  • Collagen / chemistry*
  • Collagen / metabolism*
  • Elastin / chemistry*
  • Humans
  • Mice
  • Microscopy, Atomic Force
  • Molecular Sequence Data
  • Polymers / chemical synthesis
  • Polymers / chemistry*
  • Polymers / metabolism*
  • Porosity
  • Spectroscopy, Fourier Transform Infrared
  • Thermodynamics
  • Tissue Engineering / methods*
  • Tissue Scaffolds / adverse effects
  • Tissue Scaffolds / chemistry
  • Transglutaminases / metabolism*

Substances

  • Biocompatible Materials
  • Polymers
  • Collagen
  • Elastin
  • Transglutaminases